3.558 \(\int (a+b \cosh ^{-1}(c x))^{3/2} \, dx\)

Optimal. Leaf size=140 \[ -\frac {3 \sqrt {\pi } b^{3/2} e^{a/b} \text {erf}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 c}+\frac {3 \sqrt {\pi } b^{3/2} e^{-\frac {a}{b}} \text {erfi}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 c}-\frac {3 b \sqrt {c x-1} \sqrt {c x+1} \sqrt {a+b \cosh ^{-1}(c x)}}{2 c}+x \left (a+b \cosh ^{-1}(c x)\right )^{3/2} \]

[Out]

x*(a+b*arccosh(c*x))^(3/2)-3/8*b^(3/2)*exp(a/b)*erf((a+b*arccosh(c*x))^(1/2)/b^(1/2))*Pi^(1/2)/c+3/8*b^(3/2)*e
rfi((a+b*arccosh(c*x))^(1/2)/b^(1/2))*Pi^(1/2)/c/exp(a/b)-3/2*b*(c*x-1)^(1/2)*(c*x+1)^(1/2)*(a+b*arccosh(c*x))
^(1/2)/c

________________________________________________________________________________________

Rubi [A]  time = 0.40, antiderivative size = 140, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.583, Rules used = {5654, 5718, 5658, 3308, 2180, 2205, 2204} \[ -\frac {3 \sqrt {\pi } b^{3/2} e^{a/b} \text {Erf}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 c}+\frac {3 \sqrt {\pi } b^{3/2} e^{-\frac {a}{b}} \text {Erfi}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 c}-\frac {3 b \sqrt {c x-1} \sqrt {c x+1} \sqrt {a+b \cosh ^{-1}(c x)}}{2 c}+x \left (a+b \cosh ^{-1}(c x)\right )^{3/2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCosh[c*x])^(3/2),x]

[Out]

(-3*b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*Sqrt[a + b*ArcCosh[c*x]])/(2*c) + x*(a + b*ArcCosh[c*x])^(3/2) - (3*b^(3/2)
*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcCosh[c*x]]/Sqrt[b]])/(8*c) + (3*b^(3/2)*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcCosh[c
*x]]/Sqrt[b]])/(8*c*E^(a/b))

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3308

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 5654

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcCosh[c*x])^n, x] - Dist[b*c*n, In
t[(x*(a + b*ArcCosh[c*x])^(n - 1))/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 5658

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Dist[(b*c)^(-1), Subst[Int[x^n*Sinh[a/b - x/b], x]
, x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rule 5718

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_
Symbol] :> Simp[((d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n)/(2*e1*e2*(p + 1)), x] - Dist[
(b*n*(-(d1*d2))^IntPart[p]*(d1 + e1*x)^FracPart[p]*(d2 + e2*x)^FracPart[p])/(2*c*(p + 1)*(1 + c*x)^FracPart[p]
*(-1 + c*x)^FracPart[p]), Int[(-1 + c^2*x^2)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c,
 d1, e1, d2, e2, p}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && NeQ[p, -1] && IntegerQ[p + 1
/2]

Rubi steps

\begin {align*} \int \left (a+b \cosh ^{-1}(c x)\right )^{3/2} \, dx &=x \left (a+b \cosh ^{-1}(c x)\right )^{3/2}-\frac {1}{2} (3 b c) \int \frac {x \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx\\ &=-\frac {3 b \sqrt {-1+c x} \sqrt {1+c x} \sqrt {a+b \cosh ^{-1}(c x)}}{2 c}+x \left (a+b \cosh ^{-1}(c x)\right )^{3/2}+\frac {1}{4} \left (3 b^2\right ) \int \frac {1}{\sqrt {a+b \cosh ^{-1}(c x)}} \, dx\\ &=-\frac {3 b \sqrt {-1+c x} \sqrt {1+c x} \sqrt {a+b \cosh ^{-1}(c x)}}{2 c}+x \left (a+b \cosh ^{-1}(c x)\right )^{3/2}-\frac {(3 b) \operatorname {Subst}\left (\int \frac {\sinh \left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \cosh ^{-1}(c x)\right )}{4 c}\\ &=-\frac {3 b \sqrt {-1+c x} \sqrt {1+c x} \sqrt {a+b \cosh ^{-1}(c x)}}{2 c}+x \left (a+b \cosh ^{-1}(c x)\right )^{3/2}-\frac {(3 b) \operatorname {Subst}\left (\int \frac {e^{-i \left (\frac {i a}{b}-\frac {i x}{b}\right )}}{\sqrt {x}} \, dx,x,a+b \cosh ^{-1}(c x)\right )}{8 c}+\frac {(3 b) \operatorname {Subst}\left (\int \frac {e^{i \left (\frac {i a}{b}-\frac {i x}{b}\right )}}{\sqrt {x}} \, dx,x,a+b \cosh ^{-1}(c x)\right )}{8 c}\\ &=-\frac {3 b \sqrt {-1+c x} \sqrt {1+c x} \sqrt {a+b \cosh ^{-1}(c x)}}{2 c}+x \left (a+b \cosh ^{-1}(c x)\right )^{3/2}-\frac {(3 b) \operatorname {Subst}\left (\int e^{\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \cosh ^{-1}(c x)}\right )}{4 c}+\frac {(3 b) \operatorname {Subst}\left (\int e^{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \cosh ^{-1}(c x)}\right )}{4 c}\\ &=-\frac {3 b \sqrt {-1+c x} \sqrt {1+c x} \sqrt {a+b \cosh ^{-1}(c x)}}{2 c}+x \left (a+b \cosh ^{-1}(c x)\right )^{3/2}-\frac {3 b^{3/2} e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 c}+\frac {3 b^{3/2} e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.71, size = 269, normalized size = 1.92 \[ \frac {b \left (\frac {\sqrt {\pi } (2 a-3 b) \left (\sinh \left (\frac {a}{b}\right )+\cosh \left (\frac {a}{b}\right )\right ) \text {erf}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{\sqrt {b}}+\frac {\sqrt {\pi } (2 a+3 b) \left (\cosh \left (\frac {a}{b}\right )-\sinh \left (\frac {a}{b}\right )\right ) \text {erfi}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{\sqrt {b}}-12 \sqrt {\frac {c x-1}{c x+1}} (c x+1) \sqrt {a+b \cosh ^{-1}(c x)}+8 c x \cosh ^{-1}(c x) \sqrt {a+b \cosh ^{-1}(c x)}\right )}{8 c}+\frac {a e^{-\frac {a}{b}} \sqrt {a+b \cosh ^{-1}(c x)} \left (\frac {e^{\frac {2 a}{b}} \Gamma \left (\frac {3}{2},\frac {a}{b}+\cosh ^{-1}(c x)\right )}{\sqrt {\frac {a}{b}+\cosh ^{-1}(c x)}}+\frac {\Gamma \left (\frac {3}{2},-\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{\sqrt {-\frac {a+b \cosh ^{-1}(c x)}{b}}}\right )}{2 c} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCosh[c*x])^(3/2),x]

[Out]

(a*Sqrt[a + b*ArcCosh[c*x]]*((E^((2*a)/b)*Gamma[3/2, a/b + ArcCosh[c*x]])/Sqrt[a/b + ArcCosh[c*x]] + Gamma[3/2
, -((a + b*ArcCosh[c*x])/b)]/Sqrt[-((a + b*ArcCosh[c*x])/b)]))/(2*c*E^(a/b)) + (b*(-12*Sqrt[(-1 + c*x)/(1 + c*
x)]*(1 + c*x)*Sqrt[a + b*ArcCosh[c*x]] + 8*c*x*ArcCosh[c*x]*Sqrt[a + b*ArcCosh[c*x]] + ((2*a + 3*b)*Sqrt[Pi]*E
rfi[Sqrt[a + b*ArcCosh[c*x]]/Sqrt[b]]*(Cosh[a/b] - Sinh[a/b]))/Sqrt[b] + ((2*a - 3*b)*Sqrt[Pi]*Erf[Sqrt[a + b*
ArcCosh[c*x]]/Sqrt[b]]*(Cosh[a/b] + Sinh[a/b]))/Sqrt[b]))/(8*c)

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))^(3/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)^(3/2), x)

________________________________________________________________________________________

maple [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a +b \,\mathrm {arccosh}\left (c x \right )\right )^{\frac {3}{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccosh(c*x))^(3/2),x)

[Out]

int((a+b*arccosh(c*x))^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*arccosh(c*x) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*acosh(c*x))^(3/2),x)

[Out]

int((a + b*acosh(c*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{\frac {3}{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acosh(c*x))**(3/2),x)

[Out]

Integral((a + b*acosh(c*x))**(3/2), x)

________________________________________________________________________________________